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Red envelopes are commonly collected as evidence in Segmentation and Reconstruction are closely related to the
fraud and theft cases in Taiwan. The coated paper architectures of FCN and U-net models. U-Net has a U-

surface of these red envelopes has various patterns, shaped architecture and uses skip connections between the
making it difficult to photograph or enhance fingerprints convolution and deconvolution layers to obtain high-
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To analyze the results obtained from the U-Net and FCN models, five evaluation indicators were utilized for the
segmentation stage, and two indicators were employed to evaluate the reconstruction stage (Table 1).
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Table 1
Segmentation Performance of testing datasets for the proposed U-net and FCN
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Data Collection and Preparation of Datasets (a) Original image

Fingerprint images were collected from the internet for the
training process. The dataset includes 1,000 incomplete

Fig. 3 Architecture diagrams of U-net(left) and FCN(right)

fingerprint images with synthesized backgrounds to
simulate the red envelope case scenario. Additionally,
fingerprint images developed using ethyl cyanoacrylate
fuming on red envelope surfaces are included. Of the
collected images, 800 are used for training and 200 are
used for testing two deep learning models, FCN and U-
Net.

Image Processing

The FCN and U-Net architectures were used for image
processing, which consists of Segmentation and
Reconstruction stages.

CONCLUSIONS

This study proposed methods using FCN and U-Net to
segment and reconstruct fingerprint images.

depth: 4

depth: 5
(c) FCN
Fig 4. Segmentation results of the single fingerprint on various models

(b) Ground truth (b) Ground truth () FCN

Fig 5. Reconstruction results of the single fingerprint on various models The experim ental results showed that:
According to the results, the segmentation metrics for U-Net were superior to those of FCN. For U-Net, the highest
values for accuracy, Jaccard Index (JI), Dice Similarity Coefficient (DSC), and sensitivity were observed at a depth of 6,
while specificity peaked at a depth of 5 (Table 2). In contrast, the segmentation metrics for FCN generally exhibited the
highest values at depth 5. The reconstruction metrics related to error rate, Mean Square Error (MSE), and Mean

Absolute Error (MAE) were lower for U-Net (Table 3).
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 The U-Net model outperformed the FCN model in seg-
mentation performances in all five indicators.

* |n the evaluation process for reconstruction, U-Net model
demonstrated lower error rate than FCN model in both
MSE and MAE.

The results show deep learning technologies can poten-
tially be used to process traditional physical pattern
evidence.
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Fig. 2 Image processing stages in deep learning methods

During segmentation, the ground truth image was
extracted from the raw image containing background noise
and patterns. Reconstruction restores and enhances
segmented regions for better quality and completeness.
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